

Standard Method of Test for

Resistance to Plastic Flow of Bituminous Mixtures Using Marshall Apparatus

AASHTO DESIGNATION: T 245-97¹ (ASTM DESIGNATION: D 1559-76)

1. SCOPE

1.1 This method covers the measurement of the resistance to plastic flow of cylindrical specimens of bituminous paving mixture loaded on the lateral surface by means of the Marshall apparatus. This method is for use with mixtures containing asphalt cement, asphalt cutback or tar, and aggregate up to 25.4-mm (1-in.) maximum size.

2. APPARATUS

- 2.1 Specimen Mold Assembly—Mold cylinders 101.6 mm (4 in.) in diameter by 76.2 mm (3 in.) in height, base plates, and extension collars shall conform to the details shown in Figure 1. Three mold cylinders are recommended.
- 2.2 Specimen Extractor, steel, in the form of a disk with a diameter not less than 100 mm (3.95 in.) and 12.7 mm (¹/₂ in.) thick for extracting the compacted specimen from the specimen mold with the use of the mold collar. A suitable bar is required to transfer the load from the ring dynamometer adapter to the extension collar while extracting the specimen.
- 2.3 Compaction Hammer—The compaction hammer (Figure 2) shall have a flat, circular tamping face and a 4536 ± 9 g (10 ± 0.02 lb) sliding weight (including safety finger guard if so equipped) with a free fall of 457.2 ± 1.524 mm (18 ± 0.06 in.).

NOTE 1—The compaction hammer may be equipped with a finger safety guard as shown in Figure 2.

- NOTE 2—Instead of a hand-operated hammer, and associated equipment described in Sections 2.3, 2.4, and 2.5, a mechanically operated hammer may be used provided it has been calibrated to give results comparable with the hand-operated hammer.
- **2.4** Compaction Pedestal—The compaction pedestal shall consist of a 203.2 by 203.2 by 457.2-mm (8 by 8 by 18-in.) wooden post capped with a 304.8 by 304.8 by 25.4-mm (12 by 12 by 1-in.) steel plate. The wooden post shall be oak, pine, or other wood having an average dry weight of 0.67 to 0.77 g/cm³ (42 to 48 lb/ft³). The wooden post shall be secured by four angle brackets to a solid concrete slab. The steel cap shall be firmly fastened to the post. The pedestal assembly shall be installed so that the post is plumb and the cap is level.
- **2.5** Specimen Mold Holder, mounted on the compaction pedestal so as to center

the compaction mold over the center of the post. It shall hold the compaction mold, collar, and base plate securely in position during compaction of the specimen.

- 2.6 Breaking Head—The breaking head (Figure 3) shall consist of upper and lower cylindrical segments or test heads having an inside radius of curvature of 50.8 mm (2 in.) accurately machined. The lower segment shall be mounted on a base having two perpendicular guide rods or posts extending upward. Guide sleeves in the upper segment shall be in such a position as to direct the two segments together without appreciable binding or loose motion on the guide rods.
- 2.7 Loading Jack—The loading jack (Figure 4) shall consist of a screw jack mounted in a testing frame and shall produce a uniform vertical movement of 50.8 mm (2 in.)/min. An electric motor may be attached to the jacking mechanism.

NOTE 3-Instead of the loading jack, a

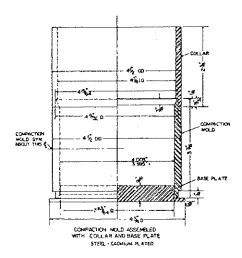


FIGURE 1 Compaction Mold

¹ Except for provisions for mechanically operated hammer this method agrees with ASTM D 1559-76.

TABLE of Equivalents for Figures 1 and 3

Metric		Metric		Metric		Metric	
Equiva-	U.S.	Equiva-	U.S.	Equiva-	U.S.	Equiva-	U.S.
lents,	Customary	Ients,	Customary	lents,	Customary	lents,	Customary
mm	Units, in.	mm	Units, in.	mm	Units, in.	mm	Units, in.
0.11	0.005	17.5	11/16	58.7	2 ⁵ / ₁₆	104.8	4 ¹ / ₈
0.8	1/32	19.0	3/4	63.5	$2^{1}/_{2}$	108.7	$4^9/_{32}$
1.6	$^{1}I_{16}$	22.2	⁷ /8	69.8	$2^{3}I_{4}$	109.1	419/64
3.2	1/8	23.8	15/16	73.0	$2^{7}I_{8}$	114.3	$4^{1}/_{2}$
4.8	³ / ₁₆	25.4	1	76.2	3	117.5	4 ⁵ / ₈
6.4	1/4	28.6	$1^{7}/_{8}$	82.6	31/4	120.6	$4^{3}/_{4}$
7.1	9/32	31.8	$1^{1}/_{4}$	87.3	$3^{7}/_{16}$	128.6	$5^{1}/_{16}$
9.5	³ / ₈	34.9	$1^{3}/_{8}$	98.4	$3^{7}I_{8}$	130.2	$5^{1}/_{8}$
12.6	0.496	38.1	$1^{1}/_{2}$	101.2	$3^{63}/_{64}$	146.0	$5^{3}/_{4}$
12.67	0.499	41.3	15/8	101.35	3.990	152.4	6
12.7	$^{1}/_{2}$	44.4	$1^{3}/_{4}$	101.47	3.995	158.8	$6^{1}/_{4}$
14.3	⁹ / ₁₆	50.8	2	101.6	4	193.7	$7^{5}/_{8}$
15.9	5/8	57.2	21/4	101.73	4.005	685.8	27

mechanical or hydraulic testing machine may be used provided the rate of movement can be maintained at 50.8 mm (2 in.)/min while the load is applied.

2.8 Ring Dynamometer Assembly—One-ring dynamometer (Figure 4) of 22.2 KN (5000 lbf) capacity and sensitivity of 44.5 N (10 lbf) up to 4.45 KN (1000 lbf) and 111.2N (25 lbf) between 4.45 and 22.2 KN (1000 and 5000 lbf) shall be equipped with a micrometer dial. The micrometer dial shall be graduated in 0.0025 mm (0.0001 in.). Upper and lower ring dynamometer attachments are required for fastening the ring dynamometer to the testing frame and transmitting the load to the breaking head.

NOTE 4—Instead of the ring dynamometer assembly, any suitable load-measuring device may be used provided the capacity and sensitivity meet the above requirements.

2.9 Flowmeter—The flowmeter shall consist of a guide sleeve and a gage. The activating pin of the gage shall slide inside the guide sleeve with a slight amount of frictional resistance. The guide sleeve shall slide freely over the guide rod of the breaking head. The flowmeter gage shall be adjusted to zero when placed in position on the breaking head when each individual test specimen is inserted between the breaking head segments. Graduations of the flowmeter gage shall be in 0.25-mm (0.01-in.) divisions.

NOTE 5—Instead of the flowmeter, a micrometer dial or stress-strain recorder graduated in 0.25 mm (0.01 in.) may be used to measure flow.

2.10 Ovens or Hot Plates—Ovens or hot plates shall be provided for heating aggregates, bituminous material, specimen molds, compaction hammers, and other equipment to the required mixing and molding temperatures. It is recommended that the heating units be thermostatically controlled so as to maintain the required temperature within 2.8°C (5°F). Suitable shields, baffle plates or sand

baths shall be used on the surfaces of the hot plates to minimize localized overheating.

2.11 Heating Device—A small hot plate with continuously variable heating rate, a sand bath, infrared lamp or other suitable device shall be available for supplying sufficient heat under the mixing bowl to maintain the aggregate and bituminous material at the desired temperature during mixing. If a hot plate is used, a wire mesh or similar material shall be placed on the hot plate to prevent direct contact between the hot plate and mixing bowl.

2.12 Mixing Apparatus—Mechanical mixing is recommended. Any type of mechanical mixer may be used provided it can be maintained at the required mixing temperature and will produce a well-coated, homogeneous mixture of the required amount in the allowable time, and further provided that essentially all of the batch can be recovered. A metal pan or bowl of sufficient capacity and hand mixing may also be used.

2.13 Water Bath—The water bath shall be at least 152.4 mm (6 in.) deep and shall be thermostatically controlled so as to maintain the bath at $60 \pm 1^{\circ}$ C ($140 \pm 2^{\circ}$ F) or $37.8 \pm 1^{\circ}$ C ($100 \pm 2^{\circ}$ F). The tank shall have a perforated false bottom or be equipped with a shelf for supporting specimens 50.8 mm (2 in.) above the bottom of the bath.

2.14 Air Bath—The air bath for as-

SHALL HAVE FREE FALL

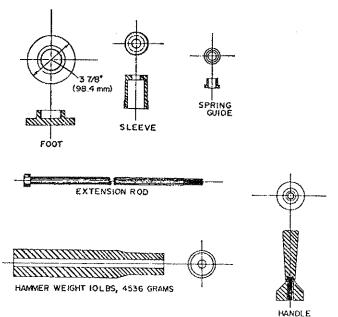
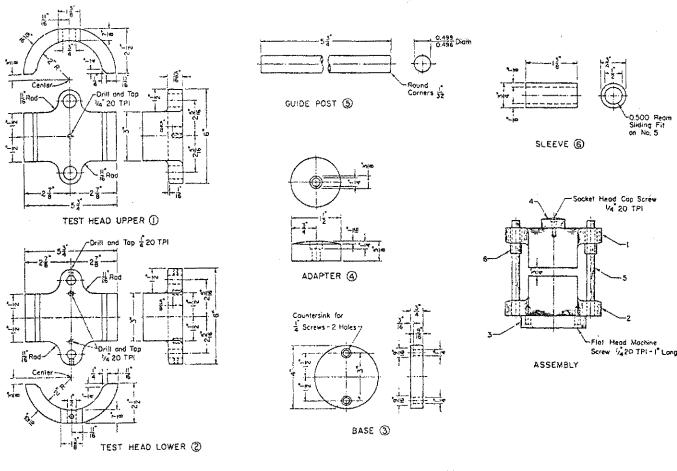



FIGURE 2 Compaction Hammer

(Table of Equivalents same as for Figure 1.)

FIGURE 3 Breaking Head

phalt cut-back mixtures shall be thermostatically controlled and shall maintain the air temperature at $25 \pm 1^{\circ}\text{C}$ (77°F \pm 2°F).

- 2.15 Miscellaneous Equipment:
- **2.15.1** Containers for heating aggregates, flat-bottom metal pans or other suitable containers.
- **2.15.2** Containers for heating bituminous material, either gill-type tins, beakers, pouring pots, or saucepans may be used.
- **2.15.3** *Mixing Tool*, either a steel trowel (garden type) or spatula, for spading and hand mixing.
- 2.15.4 Thermometers—for determining temperatures of aggregates, bitumen, and bituminous mixtures. Armoredglass, dial type or digital thermometers with metal stems are recommended. A range from 9.9 to 204°C (50 to 400°F), with sensitivity of 2.8°C (5°F) is required.
- 2.15.5 Thermometers for water and air baths sensitive to 0.2°C (0.4°F) with

a range sufficient to determine the specified bath temperature.

- **2.15.6** Balance, 2-kg capacity, sensitive to 0.1 g, for weighing molded specimens.
- **2.15.7** Balance, 5-kg capacity, sensitive to 1.0 g, for batching mixtures.
- **2.15.8** Gloves for handling hot equipment.
- **2.15.9** Rubber Gloves for removing specimens from water bath.
- **2.15.10** Marking Crayons for identifying specimens.
- **2.15.11** *Scoop*, flat bottom, for batching aggregates.
- **2.15.12** Spoon, large, for placing the mixture in the specimen molds.

3. TEST SPECIMENS

3.1 Number of Specimens—Prepare at least three specimens for each combi-

nation of aggregates and bitumen content.

3.2 Preparation of Aggregates—Dry aggregates to constant mass at 105 to 110°C (221 to 230°F) and separate the aggregates by dry-sieving into the desired size fractions.² The following size fractions are recommended:

25.0 to 19.0 mm (1 to $^{3}/_{4}$ in.) 19.0 to 9.5 mm ($^{3}/_{4}$ to $^{3}/_{8}$ in.) 9.5 mm to 4.75 mm ($^{3}/_{8}$ in. to No. 4) 4.75 mm to 2.36 mm (No. 4 to No. 8) Passing 2.36 mm (No. 8)

- **3.3** Determination of Mixing and Compacting Temperatures:
- 3.3.1 The temperatures to which the asphalt cement and asphalt cut-back must be heated to produce a viscosity of 170

² Detailed requirements for these sieves are given in M 92, Wire-Cloth Sieves for Testing Purposes.

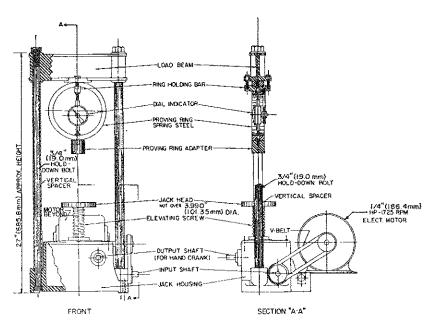


FIGURE 4 Compression Testing Machine

 \pm 20 cSt shall be the mixing temperature.

3.3.2 The temperature to which asphalt cement must be heated to produce a viscosity of 280 ± 30 cSt shall be the compacting temperature.

3.3.3 From a composition chart for the asphalt cut-back used, determine from its viscosity at 60° C (140° F) the percentage of solvent by mass. Also determine from the chart the viscosity at 60° C (140° F) of the asphalt cut-back after it has lost 50 percent of its solvent. The temperature determined from the viscosity temperature chart to which the asphalt cut-back must be heated to produce a viscosity of 280 ± 30 cSt after a loss of 50 percent of the original solvent content shall be the compacting temperature.

3.3.4 The temperature to which tar must be heated to produce Engler specific viscosities of 25 \pm 3 and 40 \pm 5 shall be respectively the mixing and compacting temperature.

3.4 Preparation of Mixtures:

3.4.1 An initial batch shall be mixed for the purpose of "buttering" the mixture bowl and stirrers. This batch shall be emptied after mixing and the sides of the bowl and stirrers shall be cleaned of mixture residue by scraping with a small limber spatula but shall not be wiped with cloth or washed clean with solvent,

except when a change is to be made in the binder or at the end of a run.

3.4.2 Weigh into separate pans for each test specimen the amount of each size fraction required to produce a batch that will result in a compacted specimen $63.5 \pm 1.27 \text{ mm} (2.5 \pm 0.05 \text{ in.}) \text{ in}$ height (about 1200 g). Mix the aggregate in each pan and place the pans on a hot plate or in the oven and heat to a temperature not exceeding the mixing temperature established in Section 3.3 by more than approximately 28°C (50°F) for asphalt cement and tar mixes at 14°C (25°F) for cut-back asphalt mixes. Heat, to the established mixing temperature, iust sufficient bituminous material for the batch in a separate container. Charge the mixing bowl with the heated aggregate. Form a crater in the dry blended aggregate and weigh the preheated required amount of bituminous material into the mixture. For mixes prepared with cutback asphalt, introduce the mixing blade in the mixing bowl and determine the total mass of the mix components plus bowl and blade before proceeding with mixing. Care must be exercised to prevent loss of the mix during mixing and subsequent handling. At this point, the temperature of the aggregate and bituminous material shall be within the limits of the mixing temperature established in Section 3.3. Mix the aggregate and bituminous material rapidly until thoroughly coated. To maintain proper mixing temperature, one of the methods described in Section 2.11 may be used.

3.4.3 Following mixing, cure asphalt cutback mixtures in a ventilated oven maintained at approximately 11.1°C (20°F) above the compaction temperature. Curing is to be continued in the mixing bowl until the precalculated weight of 50-percent solvent loss or more has been obtained. The mix may be stirred in a mixing bowl during curing to accelerate the solvent loss. However, care should be exercised to prevent loss of the mix. Weigh the mix during curing in successive intervals of 15 minutes initially and less than 10-minute intervals as the weight of the mix at 50-percent solvent loss is approached.

3.5 Compaction of Specimens:

3.5.1 Thoroughly clean the specimen mold assembly and the face of the compaction hammer and heat them either in boiling water, on the hot plate, or in an oven, to a temperature between 93.3 and 148.9°C (200 and 300°F). Place a piece of filter paper or paper toweling cut to size in the bottom of the mold before the mixture is introduced. Place the entire batch in the mold, spade the mixture vigorously with a heated spatula or trowel 15 times around the perimeter and 10 times over the interior. Remove the collar and smooth the surface of the mix with a trowel to a slightly rounded shape. Temperatures of the mixtures immediately prior to compaction shall be within the limits of the compacting temperature established in Section 3.3.

3.5.2 Replace the collar, then place a piece of filter paper or paper toweling cut to size on top of the mixture and place the mold assembly on the compaction pedestal in the mold holder, and unless otherwise specified, apply 50 or 75 blows with the compaction hammer with a free fall in 457.2 mm (18 in.). Hold the axis of the compaction hammer perpendicular to the base of the mold assembly during compaction. Remove the base plate and collar, and reverse and reassemble the mold. Apply the same number of compaction blows to the face of the reversed specimen. After compaction, remove the base plate and place the sample extractor on the end of the specimen. Place the assembly with the extension collar up in the testing machine, apply pressure to

the collar by means of the load transfer bar, and force the specimen into the extension collar. Lift the collar from the specimen. Carefully transfer the specimen to a smooth, flat surface and allow it to stand overnight at room temperature. Weigh, measure, and test the specimen.

NOTE 6—In general, specimens shall be cooled as specified in Section 3.5.2. When more rapid cooling is desired, table fans may be used. Mixtures that lack sufficient cohesion to result in the required cylindrical shape on removal from the mold immediately after compaction may be cooled in the mold in air until sufficient cohesion has developed to result in the proper cylindrical shape.

4. PROCEDURE

4.1 Bring the specimens prepared with asphalt cement or tar to the specified temperature by immersing in the water bath 30 to 40 minutes or placing in the oven for 2 hours. Maintain the bath or oven temperature at 60 ± 1°C (140 ± 1.8°F) for the asphalt cement specimens and 37.8 \pm 1°C (100 \pm 1.8°F) for tar specimens. Bring the specimens prepared with asphalt cut-back to the specified temperature by placing them in the air bath for a minimum of 2 hours. Maintain the air bath temperature at $25 \pm 1^{\circ}C$ $(77 \pm 1.8^{\circ}F)$. Thoroughly clean the guide rods and the inside surfaces of the test heads prior to making the test, and lubricate the guide rods so that the upper test head slides freely over them. The testing-head temperature shall be maintained between 21.1 to 37.8°C (70 to 100°F) using a water bath when required. Remove the specimen from the water bath, oven, or air bath, and place in the lower segment of the breaking head. Place the upper segment of the breaking head on the specimen, and place the complete assembly in position on the

TABLE 1 Stability Correlation Ratiosa

	Approximate	?	
	Thickness		
Volume of	of		Corre-
Specimen,	Specimen,		lation
em ³	ín.	mm	Ratio
200 to 213	1	25.4	5.56
214 to 225	$1^{1}/_{16}$	27.0	5.00
226 to 237	$1^{1}I_{8}$	28.6	4.55
238 to 250	$1^{3}/_{16}$	30.2	4.17
251 to 264	$1^{1}/_{4}$	31.8	3.85
265 to 276	$1^{5}/_{16}$	33.3	3.57
277 to 289	$1^{3}I_{8}$	34.9	3.33
290 to 301	17/16	36.5	3.03
302 to 316	$1^{1}/_{2}$	38.1	2.78
317 to 328	19/16	39.7	2.50
329 to 340	$1^{-5}/_{8}$	41.3	2.27
341 to 353	$1^{14}I_{16}$	42.9	2.08
354 to 367	$1^{3}/_{4}$	44.4	1.92
368 to 379	$1^{13}/_{16}$	46.0	1.79
380 to 392	$1^{7}/_{8}$	47.6	1.67
393 to 405	1 ¹⁵ / ₁₆	49.2	1.56
406 to 420	2	50.8	1.47
421 to 431	$2^{1}/_{16}$	52.4	1.39
432 to 443	21/8	54.0	1.32
444 to 456	$2^{3}/_{16}$	55.6	1.25
457 to 470	$2^{1}/_{4}$	57.2	1.19
471 to 482	2 ⁵ /16	58.7	1.14
483 to 495	$2^{3}/_{8}$	60.3	1.09
496 to 508	$2^{7}I_{16}$	61.9	1.04
509 to 522	$2^{1}I_{2}$	63.5	1.00
523 to 535	$2^9/_{16}$	65.1	0.96
536 to 546	2 ⁵ / ₈	66.7	0.93
547 to 559	$2^{11}/_{16}$	68.3	0.89
560 to 573	$2^{3}/_{4}$	69.9	0.86
574 to 585	$2^{13}/_{16}$	71.4	0.83
586 to 598	$2^{7}I_{8}$	73.0	0.81
599 to 610	$2^{15}/_{16}$	74.6	0.78
611 to 625	3	76.2	0.76

[&]quot;The measured stability of a specimen multiplied by the ratio for the thickness of the specimen equals the corrected stability for a 63.5 mm $(2^{1}/_{2}$ -in) specimen.

testing machine. Place the flowmeter, where used, in position over one of the guide rods and adjust the flowmeter to zero while holding the sleeve firmly against the upper segment of the breaking head. Hold the flowmeter sleeve firmly against the upper segment of the breaking head while the test load is being applied.

4.2 Apply the load to the specimen by means of the constant rate of movement of the loadjack or testing-machine head of 50.8 mm (2 in.) per minute until the maximum load is reached and the load decreases as indicated by the dial. Record the maximum load noted on the testing machine or converted from the maximum micrometer dial reading. Release the flowmeter sleeve or note the micrometer dial reading, where used, the instant the maximum load begins to decrease. Note and record the indicated flow value or equivalent units in twentyfive hundredths of a millimetre (hundredths of an inch) if a micrometer dial is used to measure the flow. The elapsed time for the test from removal of the test specimen from the water bath to the maximum load determination shall not exceed 30 seconds.

NOTE 7—For core specimens, correct the load when thickness is other than 63.5 mm $(2^{1}/_{2}$ in.) by using the proper multiplying factor from Table 1.

5. REPORT

- **5.1** The report shall include the following information:
- **5.1.1** Type of sample tested (laboratory sample or pavement core specimen).

NOTE 8—For core specimens, the height of each test specimen in millimetres (or inches) shall be reported.

- **5.1.2** Average maximum load in pounds-force (or newtons) of at least three specimens, corrected when required.
- 5.1.3 Average flow value, in hundredths of an inch, twenty-five hundredths of a millimetre, of three specimens, and
 - 5.1.4 Test temperature.

^b Volume-thickness relationship is based on a specimen diameter of 101.6 mm (4 in.).